Siemens (1996). SMART. Area Detector Control Software. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Yang, Y., Liu, Q.-T. \& Wu, D.-X. (1993). Inorg. Chim. Acta, 208, 85-89.
Zimmermann, H.. Hegetchweiler. K.. Keller, T.. Gramlich. V.. Schmalle, H. W., Petter, W. \& Schneider, W. (1991). Inorg. Chem. 30. 4336-4341.

Acta Cryst. (1998). C54, 1275-1277

Octakis(dimethyl sulfoxide-O)gadolinium(III) Hexacyanoferrate(III)

Martti Klinga, ${ }^{a}$ Rafael Cuesta, ${ }^{b}$ José María Moreno, ${ }^{b}$ José Manuel Dominguez-Vera, ${ }^{b}$ Enrique Colacio ${ }^{b}$ and Raikko Kıvekäs ${ }^{a}$
${ }^{a}$ Laboratory of Inorganic Chemistry, Department of Chemistry, PO Box 55, FIN-00014 University of Helsinki, Finland, and ${ }^{b}$ Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, E-18071 Granada, Spain. E-mail: martti.klinga@helsinki.fi

(Received 18 December 1997; accepted 24 March 1998)

Abstract

In $\left[\mathrm{Gd}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OS}\right)_{8}\right]\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$, the central atom of the $\left[\mathrm{Gd}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OS}\right)_{8}\right]^{3+}$ complex cation occupies a twofold axis, while in the $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$ anion, it is positioned on a centre of inversion. $\mathrm{Gd}-\mathrm{O}$ bond lengths vary between 2.374 (5) and 2.417 (5) \AA, but the $\mathrm{Fe}-\mathrm{C}$ distances of $1.943(8)-1.952(8) \AA$ are equal, within experimental error.

Comment

It is well known that hexacyanometallates can be successfully used as building blocks for constructing bimetallic assemblies which exhibit spontaneous magnetization. Two types of compounds have been prepared: (i) Prussian analogues, $A_{k} B(\mathrm{CN})_{6}$, where A and B are either two transition metals or rare-earth ions (Verdaguer, 1996; Khan, 1995; Hulliger et al., 1976), and (ii) $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$ combined with transition metal complexes (Salah el Fallah et al., 1996). In an attempt to prepare compounds of the latter type, a $\mathrm{Gd}^{\text {III }}$ complex of the Schiff base which is formed through the $2: 1$ condensation reaction of 2-pyridinecarboxaldehyde and ethylenediamine was combined with the $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$ ion. It is noteworthy that, in the reaction conditions used, the Schiff base ligand and the water molecules coordinated to the $\mathrm{Gd}^{\text {III }}$ atom were replaced by dimethyl sulfoxide (DMSO) molecules, and well developed yellow crystals of the compound $\left[\mathrm{Gd}(\mathrm{DMSO})_{8}\right]\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$, (I), were formed after five days. We report here the structure of this last compound, which consists of discrete $\left[\mathrm{Gd}(\mathrm{DMSO})_{8}\right]^{3+}$ and $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$ ions. The $\mathrm{Gd}^{\mathrm{II}}$ atom occupies a twofold axis, while the $\mathrm{Fe}^{\text {III }}$ atom is positioned on a centre of inversion.

(I)

Fig. 1. View of $\left[\mathrm{Gd}(\mathrm{DMSO})_{8}\right]\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$, showing the atomic labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted for clarity.

The Gd-O bond lengths vary between 2.374 (5) and 2.417 (5) \AA. The Gd environment is quite crowded, due to the eight-coordination, and relatively low $\mathrm{O}-\mathrm{Gd}$ O angle values have been obtained, the minimum value being $69.0(2)^{\circ}$. In the coordinated DMSO molecules, the S-O distances range from 1.512 (5) to 1.525 (6) \AA, and thus, the shortest ones do not deviate significantly from the corresponding distance of 1.495 (4) \AA for a non-coordinated DMSO molecule (Kulikova et al., 1989). Crystallographic data for $\left[M(\mathrm{DMSO})_{8}\right]^{n+}$ complexes are very rare and, as far as we know, only the crystal structures of $\left[\mathrm{ZrCl}_{4}\left(\mathrm{DMSO}_{8}\right]\right.$.DMSO (Kulikova et al., 1989) and $\left[\mathrm{La}(\mathrm{DMSO})_{8}\right]\left[\mathrm{Cr}(\mathrm{SCN})_{6}\right]$ (Cherkasova, 1994) have been reported. In addition, a deuteratedDMSO (d-DMSO) complex, $\left[\mathrm{Zr}(d \text {-DMSO })_{8}\right] \mathrm{Cl}_{4} .2 \mathrm{H}_{2} \mathrm{O}$.-$d$-DMSO (Klinga et al., 1998), is known.

The geometry of the $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$ ion is quite normal (Morioka et al., 1985). The coordination sphere of the $\mathrm{Fe}^{\text {IIII }}$ ion is very close to a regular octahedron, since the $\mathrm{Fe}-\mathrm{C}$ distances are equal, within experimental error, and the $\mathrm{C}-\mathrm{Fe}-\mathrm{C}$ angles are close to 90 or 180°, owing to the symmetry.

Experimental

Two aqueous solutions, one containing $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$ ions and the other containing the $\mathrm{Gd}^{\text {III }}$ complex of the Schiff base from the $2: 1$ condensation of 2 -pyridinecarboxaldehyde and ethylenediamine, were diffused into a U-tube with gelled DMSO at 273 K . Well developed yellow crystals of the title compound formed after five days.

Crystal data

$$
\begin{aligned}
& {\left[\mathrm{Gd}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OS}\right)_{8}\right]\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]} \\
& M_{r}=994.24 \\
& \mathrm{Monoclinic} \\
& P 2 / c \\
& a=9.920(2) \AA^{\circ} \\
& b=10.631(2) \AA \\
& c=19.413(4) \AA \\
& \beta=92.35(3))^{\circ} \\
& V=2045.6(7) \AA^{3} \\
& Z=2 \\
& D_{x}=1.614 \mathrm{Mg} \mathrm{~m}^{-3} \\
& D_{m} \text { not measured }
\end{aligned}
$$

Data collection

Rigaku AFC- $7 S$ diffractom-	2834 reflections with
eter	$I>2 \sigma(I)$
$\omega / 2 \theta$ scans	$R_{\text {int }}=0.056$
Absorption correction:	$\theta_{\text {max }}=25^{\circ}$
$\psi\langle$ scan (North et al.,	$h=0 \rightarrow 12$
$1968)$	$k=0 \rightarrow 13$
$T_{\text {min }}=0.446, T_{\text {max }}=0.547$	$l=-24 \rightarrow 24$
3500 measured reflections	3 standard reflections
3315 independent reflections	every 200 reflections
	intensity decay: $<2 \%$

Refinement

Refinement on F^{2}
$(\Delta / \sigma)_{\max }<0.001$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.052$
$\Delta \rho_{\text {max }}=1.718 \mathrm{e}^{-3}$
$w R\left(F^{2}\right)=0.121$
$S=1.169$
3315 reflections
218 parameters
$\Delta \rho_{\text {min }}=-0.871 \mathrm{e}_{\AA^{-3}}$
Extinction correction: none
Scattering factors from International Tables for Crystallography (Vol. C)
H atoms riding
$\begin{aligned} w^{\prime}= & 1 /\left[\sigma^{2}\left(F_{n}^{2}\right)+(0.0489 P)^{2}\right. \\ & +6.92 P]\end{aligned}$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$U_{\text {eq }}=(1 / 3) \sum_{i} \Sigma_{j} U^{j j} a^{\prime} a^{j} \mathbf{a}_{i} \cdot \mathbf{a j}_{j}$.				
	x	y	z	$U_{\text {eq }}$
Gd	1/2	0.02457 (5)	1/4	0.0187 (2)
Fe	0	1/2	0	0.0211 (4)
SI	0.3668 (2)	0.2340 (2)	0.11973 (10)	0.0267 (5)
S2	0.2459 (2)	-0.1069 (2)	0.13710 (11)	0.0325 (5)
S3	0.7021 (2)	-0.1908 (2)	0.15499 (11)	0.0285 (5)
S4	0.7560 (2)	0.1810 (2)	0.15840 (11)	0.0324 (5)
O1	0.4677 (5)	0.2057 (5)	0.1791 (3)	0.0264 (12)
O2	0.3777 (5)	-0.0367 (5)	0.1478 (3)	0.0282 (12)
O3	0.6191 (5)	-0.1628 (5)	0.2167 (3)	0.0281 (13)
O4	0.7177 (5)	0.0809 (5)	0.2099 (3)	0.0285 (13)
N1	-0.2798 (7)	0.3880 (7)	0.0311 (4)	0.036 (2)
N2	0.0677 (8)	0.4969 (8)	0.1564 (4)	0.049 (2)
N3	-0.1139 (7)	0.7700 (7)	0.0125 (4)	0.037 (2)
C1	-0.1763 (8)	0.4296 (7)	0.0191 (4)	0.024 (2)
C2	0.0424 (8)	0.4986 (8)	0.0986 (4)	0.030 (2)
C3	-0.0705 (8)	0.6698 (8)	0.0076 (4)	0.027 (2)
C4	0.3850 (10)	0.3976 (8)	0.1063 (5)	0.042 (2)
C5	0.4447 (10)	0.1821 (9)	0.0434 (4)	0.039 (2)
C6	0.1932 (9)	-0.0775 (9)	0.0501 (4)	0.039 (2)
C7	0.2904 (11)	-0.2649 (8)	0.1308 (5)	0.048 (3)
C8	0.6705 (11)	-0.3508 (10)	0.1357 (6)	0.058 (3)
C9	0.8711 (9)	-0.2101 (12)	0.1898 (5)	0.056 (3)
C10	0.7797 (10)	0.3210 (8)	0.2078 (5)	0.043 (2)
ClI	0.9279 (9)	0.1459 (10)	0.1411 (6)	0.049 (3)

Table 2. Selected geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{Gd}-\mathrm{O} 2$	$2.374(5)$	$\mathrm{S} 1-\mathrm{Ol}$	$1.525(6)$
$\mathrm{Gd}-\mathrm{O} 1$	$2.381(5)$	$\mathrm{S} 2-\mathrm{O} 2$	$1.512(6)$
$\mathrm{Gd}-\mathrm{O} 4$	$2.401(5)$	$\mathrm{S} 3-\mathrm{O} 3$	$1.512(5)$
$\mathrm{Gd}-\mathrm{O} 3$	$2.417(5)$	$\mathrm{S} 4-\mathrm{O} 4$	$1.519(5)$
$\mathrm{Fe}-\mathrm{C} 3$	$1.943(8)$	$\mathrm{N}-\mathrm{C} 1$	$1.151(10)$
$\mathrm{Fe}-\mathrm{C} 2$	$1.944(9)$	$\mathrm{N} 2-\mathrm{C} 2$	$1.138(11)$
$\mathrm{Fe}-\mathrm{Cl}$	$1.952(8)$	$\mathrm{N} 3-\mathrm{C} 3$	$1.155(10)$
$\mathrm{C} 3-\mathrm{Fe}-\mathrm{C} 2$	$89.8(3)$	$\mathrm{S} 3-\mathrm{O}-\mathrm{Gd}$	$1.31 .5(3)$
$\mathrm{C} 3-\mathrm{Fe}-\mathrm{Cl}$	$90.8(3)$	$\mathrm{S} 4-\mathrm{O}-\mathrm{Gd}$	$129.9(3)$
$\mathrm{C} 2-\mathrm{Fe}-\mathrm{Cl}$	$88.2(3)$	$\mathrm{N} 1-\mathrm{Cl}-\mathrm{Fe}$	$179.3(7)$
$\mathrm{S} 1-\mathrm{Ol}-\mathrm{Gd}$	$1.31 .7(3)$	$\mathrm{N} 2-\mathrm{C} 2-\mathrm{Fe}$	$179.5(8)$
$\mathrm{S} 2-\mathrm{O} 2-\mathrm{Gd}$	$1.31 .3(3)$	$\mathrm{N} 3-\mathrm{C} 3-\mathrm{Fe}$	$179.1(7)$

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1993a). Cell refinement: MSC/AFC Diffractometer Control Software. Data reduction: PROCESS in TEXSAN (Molecular Structure Corporation, 1993b). Program(s) used to solve structure: SHELXTLIPC (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: SHELXTLJPC. Software used to prepare material for publication: SHELXL93.

RK is grateful to the Academy of Finland.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: OS1014). Services for accessing these data are described at the back of the journal.

References

Cherkasova, T. G. (1994). Zh. Neorg. Khim. 39, 1316-1319.
Hulliger, F., Landolt, M. \& Vertch, H. (1976). J. Solid State Chem. 18, 307-312.
Khan, O. (1995). Nature, 378, 667-668, and references therein.
Klinga, M., Jany, G., Repo, T. \& Leskelä, M. (1998). Z. Kristallogr. New Cryst. Struct. 213, 317-318.
Kulikova, N. N., Troyanov, S. I., Nikitin, K. N. \& Gerasimova, S. O. (1989). Zh. Neorg. Khim. 34, 2693-2696.

Molecular Structure Corporation (1993a). MSC/AFC Diffractometer Control Software. Version 4.3.0. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation (1993b). TEXSAN. TEXRAY Structure Analysis Package. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Morioka, Y., Toriumi, K., Ito, T., Saito, A. \& Nakagawa, I. (1985). J. Phys. Soc. Jpn, 54, 2184-2189.

North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Salah el Fallah, M., Rentschler, E., Caneschi, A., Scssoli, R. \& Gatteschi, D. (1996). Angew. Chem. Int. Ed. Engl. 35, 1947-1949, and references therein.
Sheldrick, G. M. (1990). SHELXTL/PC. Version 4.2. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Verdaguer, M. (1996). Science, 272, 698-699, and references therein.

Acta Cryst. (1998). C54, 1277-1279

Structural Investigation of Nickel(II) Complexes. XIII. μ - $2,3,5,5,6$-Tetra-(2-pyridyl)pyrazine]-bis[bis(acetato)aqua-nickel(II)]-Formaldehyde (1/1)

Marian Koman, Zuzana Baloghová and Dušan Valigura
Department of Inorganic Chemistry, Slovak Technical University, Radlinského 9, 81237 Bratislava, Slovakia.
E-mail: koman@cvtstu.cvt.stuba.sk

(Received 17 September 1997; accepted 3 March 1998)

Abstract

In the title compound, $\left[\mathrm{Ni}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{4}\left(\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{~N}_{6}\right)\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] . \mathrm{CH}_{2} \mathrm{O}$, the coordination polyhedron of each $\mathrm{Ni}^{\text {II }}$ centre is a distorted octahedron formed by three N -atom donors from a tetra(2-pyridyl)pyrazine molecule and an aqua O atom in the equatorial positions, and by two O atoms from different acetate anions in the axial positions. The formaldehyde molecule is not coordinated; it

is disordered over two sites related by a crystallographic twofold axis.

Comment

Despite the steric repulsion between its adjacent pyridine rings, the ligand tetra(2-pyridyl)pyrazine (tppz) can act as a bis-tridentate ligand with Cu^{11} (Graf et al., 1993; Valigura et al., 1998), thus forming dinuclear complexes containing two metal atoms bridged by a pyrazine ring. Removal of this steric repulsion was achieved by a twisting deformation of the central pyrazine ring and allowing the Cu^{11} atoms to adopt pentacoordination. Similar deformations of the central pyrazine ring were also found for mononuclear $\left[\mathrm{Zn}(\mathrm{tppz}) \mathrm{Cl}_{2}\right]$ (Graf et al., 1993) and $\left[\mathrm{Cu}(\mathrm{tppz}) \mathrm{Cl}_{2}\right]$ (Kožišek et al., 1997). We have now extended this work to $\mathrm{Ni}^{1 \mathrm{I}}$ complexes and report herein the structure of the title compound, (I).

(I)

The crystal structure of the title complex consists of $\left[\mathrm{Ni}_{2}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{tppz})\right]$ and $\mathrm{CH}_{2} \mathrm{O}$ molecules (Fig. 1) held together by van der Waals interactions and weak intermolecular hydrogen bonds [$\mathrm{O} 2 \cdots \mathrm{H} 11(-x$, $1-y,-z) 2.372 \AA$ A. The coordination polyhedron of the $\mathrm{Ni}^{\mathrm{II}}$ atom is a distorted octahedron with nickel-to-donor $\mathrm{N} \mathrm{I}^{10}$ atom is a distorted octahedron with nickel-to-donor
atom distances within the range 2.001 (4)-2.119(4) A . The greatest deviation from ideal octahedral angles is for $\mathrm{N} 1-\mathrm{Ni} 1-\mathrm{N} 3\left[156.41(15)^{\circ}\right]$ and is attributed to the shape of the tppz ligand. The tendency of the $\mathrm{Ni}^{\mathrm{II}}$ central atom to adopt the octahedral polyhedron seems to be greater than for Zn^{11}, for which pentacoordinate complexes are found. A catena-nickel(II) complex containing pyrazine (Travníček et al., 1996) contains octahedral polyhedra with pyrazine N -atom donors in axial positions and $\mathrm{Ni}-\mathrm{N}$ distances of 2.150 (2) \AA. On the other hand, the nickel(II) bromide complex with $2,5-\mathrm{di}$ methylpyrazine (Ayres et al., 1964) exhibits a squareplanar configuration with an $\mathrm{Ni}-\mathrm{N}$ distance of $1.85 \AA$. The anion and/or dianion of 2,3-pyrazinedicarboxylic acid (Mao et al., 1996) gives nickel(II) complexes which are nearly octahedral, with $\mathrm{Ni}-\mathrm{N}$ distances of 2.048 (1) and 2.074 (1) \AA, respectively. The title complex exhibits a similar twisting deformation of the central pyrazine ring, characterized by a dihedral angle of 12.8° between the $\mathrm{C}-\mathrm{N}-\mathrm{C}$ planes.

